The Max - Plus Martin Boundary

نویسنده

  • CORMAC WALSH
چکیده

We develop an idempotent version of probabilistic potential theory. The goal is to describe the set of max-plus harmonic functions, which give the stationary solutions of deterministic optimal control problems with additive reward. The analogue of the Martin compactification is seen to be a generalisation of the compactification of metric spaces using (generalised) Busemann functions. We define an analogue of the minimal Martin boundary and show that it can be identified with the set of limits of “almost-geodesics”, and also the set of (normalised) harmonic functions that are extremal in the max-plus sense. Our main result is a max-plus analogue of the Martin representation theorem, which represents harmonic functions by measures supported on the minimal Martin boundary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. M G ] 7 J un 2 00 5 THE MAX - PLUS MARTIN BOUNDARY

We develop an idempotent version of probabilistic potential theory. The goal is to describe the set of max-plus harmonic functions, which give the stationary solutions of deterministic optimal control problems with additive reward. The analogue of the Martin compactification is seen to be a generalisation of the compactification of metric spaces using (generalised) Busemann functions. We define...

متن کامل

Max-Plus algebra on tensors and its properties

In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.

متن کامل

A max-plus fundamental solution semigroup for a class of lossless wave equations

A new max-plus fundamental solution semigroup is presented for a class of lossless wave equations. This new semigroup is developed by employing the action principle to encapsulate the propagation of all possible solutions of a given wave equation in the evolution of the value function of an associated optimal control problem. The max-plus fundamental solution semigroup for this optimal control ...

متن کامل

Reachability analysis for timed automata using max-plus algebra

We show that max-plus polyhedra are usable as a data structure in reachability analysis of timed automata. Drawing inspiration from the extensive work that has been done on difference bound matrices, as well as previous work on max-plus polyhedra in other areas, we develop the algorithms needed to perform forward and backward reachability analysis using maxplus polyhedra. To show that the appro...

متن کامل

Structure of the eigenspace of a Monge matrix in max-plus algebra

A complete description of the eigenspace structure for a given n × n Monge matrix in a max-plus algebra is presented. Based on the description, an O(n2) algorithm for computing the eigenspace dimension is formulated, which is faster than the previously known algorithms. © 2007 Elsevier B.V. All rights reserved. MSC: primary 04A72; secondary 05C50;15A33

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004